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Highlights   

1.  Two source regions  of pelagic  Sargassum  in the  Gulf  of Mexico (GoM)  are revealed  

2.  GoM  Sargassum  can  originate from  either the  GoM interior  or the Caribbean Sea  

3.  The Loop Current System  and eddies  strongly impact  Sargassum  distributions   

4.  Sargassum  around  Florida  lags those near the Yucatan  by about one month  
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23 Abstract 

Pelagic Sargassum in the Gulf of Mexico (GoM) plays an important role in ocean biology and ecology, 

yet our knowledge of its origins and transport pathways is limited. Here, using satellite observations of 

Sargassum areal density and ocean surface currents between 2000 and 2023, we show that large amounts 

of Sargassum in the GoM can either originate from the northwestern GoM or be a result of physical 

transport from the northwestern Caribbean Sea, both with specific transport pathways. Sargassum of the 

northwestern GoM can be transported to the eastern GoM by ocean currents and eddies, eventually 

entering the Sargasso Sea. Sargassum entering the GoM from the northwestern Caribbean Sea can be 

transported in three different directions, with the northward and eastward transports governed by the 

Loop Current System (LCS) and westward transport driven by the westward extension of the LCS, the 

propagation or relaying of ocean eddies, the wind-driven westward currents on the Campeche Bank with 

or without eddies, and the westward currents with/without currents associated with eddies in the 

northern/central GoM. Overall, the spatial distribution patterns of pelagic Sargassum in the GoM are 

strongly influenced by the LCS and relevant eddies. 

Keywords 

Sargassum, Gulf of Mexico, Caribbean Sea, Loop Current System, ocean currents, satellite observation 

1. Introduction 

The Gulf of Mexico (GoM, Fig. 1a) is characterized by a wide range of habitats and relatively high 

biodiversity (e.g., Chen, 2017), with over 15,000 recorded species representing over 40 phyla (Felder et 

al., 2009). Among the most speciose communities are those associated with holopelagic Sargassum (S. 
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natans and S. fluitans) macroalgae (Gower et al., 2006; Gower and King, 2011, 2020; Doyle and Franks, 

2015; Hu et al., 2016a, 2016b; Siuda et al., 2016; Martin et al., 2021; Fig. 1b). These seaweeds provide 

essential habitat and food sources for marine animals such as crabs, fish, shrimps, turtles, and sea birds 

(Wells and Rooker, 2004; Casazza and Ross, 2008; Witherington et al., 2012; Sanchez-Rubio et al., 

2018). In addition, Sargassum may have far-reaching impacts on nutrient remineralization and primary 

productivity (Hu et al., 2021; Lapointe et al., 2021; McGillicuddy et al., 2023), as well as the potential 

to serve as raw materials for the production of biofuels and pharmaceutical products (Milledge et al., 

2016; Amador-Castro et al., 2021; Orozco-González et al., 2022). In spite of these potential benefits, 

large Sargassum beaching events can have deleterious effects on human health, local tourism and 

economies, and coastal ecosystems (e.g., Smetacek and Zingone, 2013; Webster and Linton, 2013; Siuda 

et al., 2016; Van Tussenbroek et al., 2017; Gower and King, 2019). 

To date, our understanding of the origins and transport pathways affecting the spatial distributions of 

GoM Sargassum is limited. Based on the sequential monthly maps of Sargassum population in the GoM 

and north Atlantic Ocean, derived from Medium Resolution Imaging Spectrometer (MERIS) satellite 

measurements between 2002 and 2008, Gower and King (2011) showed that Sargassum developed 

locally in the northwestern GoM in spring, and was then transported to the southeastern GoM and north 

Atlantic Ocean in summer and fall through major ocean currents such as the Loop Current (LC), Florida 

Current (FC), and Gulf Stream (see the schematic diagram of these ocean currents in Fig. 1a). More 

recent satellite observations suggest a new source region in the tropical Atlantic (e.g., Gower et al., 2013; 

Wang and Hu, 2017; Wang et al., 2019; Gower and King, 2020), which could deliver large amounts of 

Sargassum to the GoM. Satellite imagery from the Sargassum Watch System (SaWS, Hu et al., 2016b; 

https://optics.marine.usf.edu/projects/saws.html) revealed that Sargassum in the Caribbean Sea could be 

https://optics.marine.usf.edu/projects/saws.html
https://optics.marine.usf.edu/projects/saws.html
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transported to the GoM, yet it is unclear how the transport of Sargassum within the GoM is influenced 

by major ocean currents and eddies. 

The objectives of this study are to explore the origins of Sargassum in the GoM and to investigate the 

mechanisms impacting the transport and spatial distributions of GoM Sargassum. This is achieved 

through analyzing the satellite-derived Sargassum distributions in the context of ocean surface currents 

and eddies. 

2. Data and Methods 

Weekly 0.1° × 0.1° Sargassum areal density maps from February 2000 to June 2023 were derived from 

daily Moderate Resolution Imaging Spectroradiometer (MODIS) measurements (from both Terra and 

Aqua satellites) using the method described in Wang and Hu (2016), with images available through the 

SaWS (Hu et al., 2016b; https://optics.marine.usf.edu/projects/saws.html). Briefly, each image pixel 

(about 1 km in size) during a week within a grid was classified to be either Sargassum containing, 

Sargassum free, or invalid (due to either clouds, sun glint, straylight, or other factors). This determination 

was based on an algorithm to quantify the pixel’s “red-edge” reflectance (i.e., enhanced reflectance in 

the near infrared wavelengths; Wang and Hu, 2016) and specific image processing methods to remove 

noise. The spectral shapes of some randomly selected Sargassum-containing pixels were inspected to 

confirm presence of Sargassum instead of other possible floating matters (e.g., Trichodesmium), using a 

spectra-differencing technique demonstrated by Qi et al. (2020). Basically, for MODIS, the difference 

spectra between the Sargassum-containing pixel and nearby water pixel showed elevated reflectance 

around 645 nm without the spectral “wiggling” features in the blue-green wavelengths due to pigments 

specific to Trichodesmium (Hu et al., 2010). For the Ocean Colour and Land Imager (OLCI), similar 

elevated reflectance was observed around 620 nm for both Sargassum and Trichodesmiumm pixels, but 

https://optics.marine.usf.edu/projects/saws.html
https://optics.marine.usf.edu/projects/saws.html
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the latter showed relatively higher reflectance at 510 nm than the former (Qi et al., 2020). Once the 

randomly selected pixels were confirmed to be dominated by Sargassum, all classified image features 

were assumed to contain Sargassum. 

Each Sargassum-containing pixel was quantified for its areal density (0%–100%) using lower and upper 

bound threshold values established through field measurements and image statistics. The mean areal 

density for a grid within a week was defined as the arithmetic mean of all Sargassum-containing and 

Sargassum-free pixels, with each pixel contributing 0%-100%. Because the areal density is proportional 

to biomass density with a mean conversion factor of 3.34 kg wet biomass m-2 (Wang et al., 2018), the 

areal density and biomass density are used interchangeably in this study. 

Daily 0.25° × 0.25° altimetry-based ocean surface geostrophic current data between February 2000 and 

June 2023, provided by the Copernicus Marine Environment Monitoring Service (CMEMS, 

https://marine.copernicus.eu/), were used to analyze the spatial distributions and temporal variability of 

ocean surface currents and mesoscale eddies in the GoM. This product provides an important source of 

observations for surface ocean circulation studies (Vignudelli et al., 2016). It has global coverage, but 

only data for the GoM were used here. In addition, data before August 2021 are in delayed-time mode, 

while the data are in near-real-time mode thereafter. This product has been widely used in previous GoM 

ocean circulation studies and other relevant studies (e.g., Alvera-Azcarate et al., 2009; Liu et al., 2014, 

2016; Weisberg et al., 2016; Zhu and Liang, 2020; Zhang Y. et al., 2022; Zhang et al., 2023). Daily data 

were averaged to generate weekly maps to match the time frame of Sargassum maps. 

3. Results 

The distribution map of mean Sargassum areal density during April–September of 2011–2020 (Fig. 1b), 

shows Sargassum nearly everywhere in the GoM, with more Sargassum in the northwestern GoM and 

https://marine.copernicus.eu/
https://marine.copernicus.eu
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along the LC edges than in other locations. Such a distribution can be explained in the context of ocean 

circulation patterns and their variations. Examination of the combined Sargassum areal density and 

ocean current maps revealed multiple pathways of Sargassum transport that affected Sargassum 

distributions in the GoM. These pathways are broadly characterized into two categories: 1) local 

Sargassum origin (i.e., from within the GoM) and 2) remote Sargassum origin (i.e., from outside the 

GoM), and they are schematically illustrated in Fig. 2. 

The first category (local origin in the northwestern GoM) has already been discussed by Gower and King 

(2011), where sequential monthly maps of Sargassum population in the GoM and north Atlantic Ocean, 

derived from MERIS satellite observations during 2002–2008, were used to infer the eastward transport 

of Sargassum via the LC and FC. Here, the image sequence in Fig. 3 clearly shows the progression of 

the eastward movement of Sargassum during May and June 2014. The continuous evolution of 

Sargassum’s eastward movement within the GoM can also be seen from an animation provided in the 

Supporting Information. The year of 2014 was selected here because this is the year during which large 

amounts of Sargassum were first found in the northwestern GoM between May and early June (Figs. 

3a–3c), while the eastern GoM showed limited amounts and the northwestern Caribbean Sea showed 

nearly no Sargassum. During this period, Sargassum biomass density in the area north of the Loop 

Current System (LCS; box 2 in Fig. 3) increased over time. By mid–late June, Sargassum amount on the 

West Florida Shelf also increased (box 3 in Fig. 3). The combined Sargassum and ocean surface current 

maps prior to spring 2014 revealed nearly no Sargassum in the Caribbean Sea between November 2012 

and May 2014 (figures not shown here), suggesting that the large amount of Sargassum in the 

northwestern GoM appear to have originated from the northwestern GoM interior, and then been 

transported to the eastern GoM and eventually to the north Atlantic Ocean. Such observations confirm 

the hypothesis proposed by Gower and King (2011). 
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In the 2014 case, the transport of Sargassum from the northwestern GoM to the eastern GoM was mainly 

driven by ocean currents and eddies, as schematically shown in Fig. 2a. Specifically, the anticyclonic 

eddies and eastward currents inside box 1 of Fig. 3 helped transport Sargassum from west to east, and 

the LC, anticyclonic eddies, and other eastward currents in box 2 of Fig. 3 also facilitated the eastward 

transport of Sargassum. After reaching the eastern boundary of box 2, Sargassum was further transported 

southeastward on the West Florida Shelf through the southeastward currents (annotated with yellow 

arrows in box 3 of Fig. 3c). On the other hand, a portion of Sargassum near the southern boundary of 

box 2 has been transported southeastward by the LC to the Straits of Florida. The distributions of these 

surface currents and eddies, as well as the changes of Sargassum biomass density can be clearly 

visualized in an animation provided in the Supporting Information. Note that the southeastward currents 

on the West Florida Shelf and the currents associated with the two anticyclonic eddies in box 2 of Figs. 

3c–3d had speeds of ~20–30 cm/s. In addition to the influence of ocean currents and eddies, the changes 

of wind direction from easterly to westerly or southwesterly (Le Hénaff and Kourafalou, 2016) may also 

have contributed to the eastward transport of Sargassum. A time series analysis was conducted to further 

understand the eastward transport of Sargassum within the GoM. Specifically, the time series of 

Sargassum biomass density over boxes 1–3 from May 16 to July 3, 2014, was derived from weekly 

running mean Sargassum areal density maps, and the results are presented in the inset figure of Fig. 3d. 

It is clear that box 1 was characterized by decreasing Sargassum biomass density, while box 2 was 

characterized by increasing biomass density until June 25 (annotated with a black vertical line in the 

inset figure), after which Sargassum biomass density decreased gradually. Regarding box 3, Sargassum 

biomass density increased sharply from June 16 to June 28. These results clearly demonstrate the 

eastward transport of Sargassum from west to east over the northern GoM. 
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The second category has not been described before in the refereed literature. In this pathway, Sargassum 

in the GoM has a remote origin in the tropical Atlantic Ocean where the Great Atlantic Sargassum Belt 

(GASB) forms nearly every spring–summer since 2011 (Gower et al., 2013; Wang et al., 2019; Gower 

and King, 2020). Specifically, large amounts of Sargassum were first observed in the tropical Atlantic 

Ocean during early spring, which were then transported to the Caribbean Sea via dominant ocean 

currents and eddies (Andrade-Canto et al., 2022), and eventually to the GoM from the Caribbean Sea. A 

similar transport mechanism was reported for satellite-tracked drifters launched in the eastern Caribbean 

Sea (Richardson, 2005) and the central Atlantic Ocean (Franks et al., 2016; Van Sebille et al., 2021; 

Drouin et al., 2022). Fig. 4 clearly shows that Sargassum in the northwestern Caribbean Sea is 

transported into the GoM by surface currents. 

Upon entering the GoM, Sargassum can reach the central, western, northern, and southeastern GoM, as 

well as the Straits of Florida and even the east coast of Florida, all driven by ocean currents and eddies 

(as schematically shown in Fig. 2b). The LCS and eddies exhibit complicated spatial patterns within the 

GoM and the pattern evolution has variability on different time scales (e.g., Leben, 2005; Schmitz, 2005; 

Liu et al., 2016). The individual panels in Fig. 4 illustrate how the different transport pathways evolved 

in time, all controlled by the LCS, wind-driven ocean currents on the Campeche Bank, ocean currents in 

the northern/central GoM, and relevant eddies. These include the northward transport (Figs. 4a–4c), 

eastward transport (Figs. 4d–4f), and westward transport (Figs. 4g–4x). 

The northward transport of Sargassum is illustrated in Figs. 4a–4c (corresponds to pathway #1 in Fig. 

2b), where the positions of Sargassum at ~24, 26, and 28oN correspond exactly to the three typical stages 

of the LC extension, including the “port-to-port”, “averagely extended”, and “fully extended” stages 

(shown as yellow, white, and green curves with arrows in Fig. 1a, respectively; Leben, 2005). 
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The eastward transport of Sargassum is shown in Figs. 4d–4f (corresponds to pathway #2 in Fig. 2b). 

During May 22–28, 2018, Sargassum appeared in the western branch of the LC. Four days later, 

Sargassum appeared in the eastern branch of the LC, and then was transported to the Straits of Florida 

during May 30–June 5, which finally reached the north Atlantic Ocean along the east coast of Florida. 

The westward transport of Sargassum is more complex (Figs. 4g–4x), which can be characterized by the 

following six mechanisms: 

(1) Westward transport of the wind-driven ocean currents on the Campeche Bank (pathway #3 in Fig. 

2b and Figs. 4g–4i) 

(2) Westward transport of the wind-driven ocean currents on the Campeche Bank and eddies (e.g., LC 

Eddies or LCEs; pathway #4 in Fig. 2b and Figs. 4j–4l, 5d–5e) 

(3) Westward propagation of eddies (e.g., LCEs; pathway #5 in Fig. 2b and Figs. 4m–4o, 5d–5e) 

(4) Relaying of eddies (pathway #6 in Fig. 2b and Figs. 4p–4r) 

(5) Westward extension of the LCS (pathway #7 in Fig. 2b and Figs. 4s–4u) 

(6) Westward transport of the westward currents with/without currents associated with eddies in the 

northern/central GoM (pathway #8 in Fig. 2b and Figs. 4v–4x) 

As illustrated in Figs. 4g–4i, once Sargassum enters the GoM from the northwestern Caribbean Sea 

through the Yucatan Channel, the westward transport of the wind-driven ocean currents on the 

Campeche Bank (with schematic diagram shown in Figs. 1a and 2b) can bring Sargassum from the east 

to the west directly. On the other hand, if Sargassum encounters eddies (e.g., LCEs) during its westward 

transport driven by the wind-driven ocean currents on the Campeche Bank, the eddies can further 



 
 

 
 

 

         

    

         

         

          

          

  

  

        

        

         

         

        

         

      

             

             

          

          

        

        

  

          

       

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

10 

transport Sargassum westward (Figs. 4j–4l and 5d–5e). The third mechanism explaining the westward 

movement of Sargassum is shown in Figs. 4m–4r and 5d–5e. Specifically, the westward propagation of 

eddies (e.g., LCEs; annotated with white circles in Figs. 4m–4o and 5d–5e) allowed the westward 

transport of Sargassum, where Sargassum was mostly on the eddy edge rather than in the eddy center. 

Likewise, the relaying between eddies (e.g., LCEs) can allow Sargassum to be transported both westward 

and northward, as is clearly shown in Figs. 4p–4r and an animation provided in the Supporting 

Information. 

After getting to the northern/northwestern edge of the LCS, the westward transport of Sargassum can be 

achieved through the westward extension of the LCS. As shown in Figs. 4s–4u, during August 5–11, 

2021, Sargassum appeared on the western edge of the LCE at ~90oW, and then reached ~92oW after two 

weeks (Fig. 4u). The direct westward extension of the LCS within the two weeks facilitated the westward 

transport of Sargassum. Additionally, the westward transport of the westward currents with/without 

currents associated with eddies in the northern/central GoM can also transport Sargassum westward. 

According to Fig. 4v, the westward currents (annotated with white arrows in Figs. 4v–4x) moved 

Sargassum from the LCS to ~90oW in mid-April 2022. These currents were the northern part of a 

cyclonic eddy and the southern part of an anticyclonic eddy (see clear pictures in an animation provided 

in the Supporting Information). In around one week, the cyclonic eddy entrained more Sargassum and 

lots of Sargassum was transported onto the Louisiana–Texas Shelf (Fig. 4w), and then Sargassum was 

transported further westward under the influence of the westward coastal currents (annotated with yellow 

arrows in Figs. 4v–4x) on the Louisiana–Texas Shelf in late April 2022 (Fig. 4x). 

The durations (number of days) of the aforementioned transport mechanisms of Sargassum of Caribbean 

origin are summarized in Table 1 for the years after 2013, during which apparent transport pathways of 
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237 large  amounts  of Sargassum  in the  GoM  have  been  observed  in most  years.  It  was  found that  each of the  

Sargassum  transport  mechanisms  exhibited  strong interannual  variability, and that  most  of them  lasted  

longer in major  Sargassum  years  (e.g., 2018, 2019,  2021, and 2022) than in  other years.  In addition,  

among the  six mechanisms  of westward transport  of Sargassum,  the  mechanisms  involving the  westward 

transport  of the  wind-driven  ocean currents  on the  Campeche  Bank  with/without  eddies, westward  

propagation  of eddies, and the  westward extension of  the  LCS  play a  more  important  role  in the  westward 

transport  of GoM  Sargassum  compared to the  other two (i.e., relaying of eddies;  westward transport  of  

the  westward currents  with/without  currents  associated with eddies  in the  northern/central  GoM).  It  is  

worth mentioning  that  Sargassum  transport  mechanisms  falling under the  second  category (remote  origin  

in the  tropical  Atlantic  Ocean) may  occur concurrently. For instance, during the  northward intrusion of  

the LC, Sargassum  coming from  the Caribbean Sea  can be  transported both northward and eastward by  

the LC in the GoM. In addition, a  transition from one mechanism to another may occur gradually as the  

dynamic  LCS  evolves  in time. Similarly, the  transport  of GoM  Sargassum  under the  second  category  

may also occur concurrently with the  transport  of Sargassum  under the  first  category (i.e., local  origin  

in the northwestern GoM).  

The  image  sequences  above  clearly revealed  the  transport  pathways  of the  observed large  amounts  of  

Sargassum  in the  GoM  and the  effects  of the  LCS  on the  Sargassum  transport. Indeed, the  LCS  not  only  

plays  a key role in the northward, westward, and eastward transport of Sargassum, but can also regulate  

the  spatial  distribution  patterns  of Sargassum.  On the  other hand,  even for the  same  physical  mechanism  

of Sargassum  transport  (via  the  LCS) as  shown above, the  inter-annual  variability of the  LCS  can lead  

to different  Sargassum  distribution  patterns. For example,  when the  main axis  of the  LCS  had  a  

northward penetration at  ~28oN  (Figs. 5a–5c), the  spatial  patterns  of the  LCS  differed substantially in 

three  different  years  (i.e., 2014, 2015, and 2021), as  did  the  corresponding distribution  patterns  of 

Sargassum.  A  similar case  can occur even within the  same  year (e.g., 2015), as  demonstrated in Figs. 
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12 

5d–5f. During the period of late July–late August 2015, Sargassum was transported westward by the 

westward movement of a LCE (white circles in Figs. 5d–5f) and the westward transport of the wind-

driven ocean currents on the Campeche Bank (white ellipses in Figs. 5d–5f). The LCE-transported 

Sargassum decreased over time, while Sargassum transported by the wind-driven ocean currents first 

increased and then decreased. Such changes in Sargassum amount over time are also observed in Fig. 3. 

Specifically, during May 10–16, 2014, the stationary cyclonic eddy (yellow circle in Fig. 3) in the Bay 

of Campeche was virtually free of Sargassum (Fig. 3a). After two weeks, the Sargassum amount 

increased sharply (Fig. 3b), and then declined gradually starting from June 5th (Figs. 3c & 3d). 

Another example is when the main axis of the LCS had a northward position at ~26oN, where it can also 

significantly affect the spatial distribution patterns of Sargassum in different years (i.e., 2017, 2018, 

2019; Figs. 5g–5i) and in the same year (i.e., 2018; Figs. 5j–5l). For the former cases, in both 2018 and 

2019, more Sargassum was found than in 2017 in the northern part of the LCS (within the well-developed 

but still undetached LCE), when direct transport of Sargassum from the northwestern Caribbean Sea to 

the Straits of Florida also occurred (see the white curves with arrows in Figs. 5h & 5i). For the latter 

cases, between early June and late July of 2018, different locations/shapes of the LC and the undetached 

LCE led to different Sargassum transport and distribution patterns. During June 18–24 (Fig. 5k), the 

undetached LCE was oriented in the northwest–southeast direction, while it changed to the west–east 

direction during July 15–21 (Fig. 5l) when the LC penetrated further north (at ~24oN). The distribution 

patterns of Sargassum closely followed these circulation patterns, which are dramatically different from 

those during June 7–13 (Fig. 5j). 

In general, ocean surface currents and eddies in the GoM have strongly influenced the transport and 

spatial distribution patterns of Sargassum. In the adjacent Straits of Florida, where cyclonic eddy activity 
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is intense (Kourafalou and Kang, 2012; Zhang et al., 2019), ocean eddies also contribute to Sargassum 

transport. As shown in Fig. 6, Sargassum entrained within a cyclonic eddy was transported eastward 

along the Florida Keys due to the eastward movement of the eddy. 

4. Discussion 

The observations above are based on the combined Sargassum and surface ocean current maps, with the 

Sargassum distribution patterns explained by physical transport mechanisms. Although local growth and 

mortality can also change Sargassum abundance and distribution without physical transport, local 

growth is unlikely to explain the temporal changes in specific locations in the cases examined above. 

For example, under typical conditions, Sargassum daily doubling rate was estimated to be ~0.03 (Wang 

et al., 2019). Then, in one week, local growth would lead to an increase of (2(0.03x7) – 1) = 16%, and in 

two weeks the increased amount would be 34%, not sufficient to explain the much higher changes at 

fixed locations between sequential weekly images. Therefore, although local growth or mortality cannot 

be ruled out due to lack of in situ data, their roles in determining the spatial distribution patterns of 

Sargassum are likely minor as compared to physical transport. 

It should be noted that the growth rate of Sargassum varies over time, and the method (e.g., in situ and 

ex-situ culture systems vs satellite observations) used to calculate the growth rate can also influence the 

results. In this study, the selected daily Sargassum doubling rate (~0.03) is a mean growth rate, derived 

from satellite observations of Sargassum during Sargassum growing seasons (Wang et al., 2019), and it 

can be smaller than the growth rates derived from in situ and ex-situ culture systems (e.g., ~0.03–0.06 

from Magaña-Gallegos et al., 2023). In addition, we note that in many previous studies of pelagic 

Sargassum (e.g., Johns et al., 2020; Marsh et al., 2021), 1% windage (i.e., 1% of the 10 m winds; direct 

momentum transfer from the winds to floating materials) has been added to surface current velocity field 

https://0.03�0.06
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to achieve better understanding of Sargassum transport and prediction. Here, 1% windage for the GoM 

(equivalent to ~0.01–0.06 m/s; Zhang and Hu, 2021) is negligible compared to the strong ocean current 

field of the GoM (e.g., >0.5 m/s for the LC/FC system and LCEs, Liu et al., 2016 and Zhang et al., 2023; 

~0.3–0.35 m/s for the ocean currents on the Campeche Bank, Lilly and Pérez-Brunius 20221), therefore, 

windage effects were not considered in this study. 

Similar to ocean currents, Stokes drift (residual transport due to ocean waves) can also contribute to the 

transport of drifting materials, particularly in shallow, nearshore waters (e.g., Monismith and Fong, 2004; 

Röhrs et al., 2012; Hunter et al. 2022), which induces a displacement of materials parallel to the direction 

of wave propagation (Jouanno et al., 2021). This mechanism allows Sargassum to migrate and possibly 

accumulate in shallow waters along the coasts. The effects due to Stokes drift are not considered in this 

paper because 1) the focus of this study is on the transport of large amounts of pelagic Sargassum in the 

open GoM rather than in shallow nearshore waters where the influence of ocean waves is more important, 

and 2) in the open GoM surface current velocities are generally ~8–10 times larger than Stokes drift 

velocities (Bosi et al., 2021). This omission is consistent with previous studies focusing on the simulation 

and prediction of Sargassum transport in the tropical and subtropical North Atlantic (e.g., Brooks et al., 

2018; Putman et al., 2018; Wang et al., 2019; Marsh et al., 2021). Nevertheless, future studies on 

Sargassum transport in shallow nearshore waters should consider the Stokes drift effects. 

The findings above have significant implications on Sargassum forecasts for sensitive coastal habitats 

in Florida, where recurrent beaching events have been reported in the Florida Keys and along the east 

coast of Florida (e.g., Miami Beach and Palm Beach; Trinanes et al., 2021; Zhang S. et al., 2022). For 

example, how long will it take to transport Sargassum from the northwestern Caribbean Sea, or from the 

northern edge of the LCS, to the Florida Keys and the east coast of Florida? Figs. 7a–7i show an example 

https://0.3�0.35
https://0.01�0.06
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of continuous transport of Sargassum from the northwestern Caribbean Sea to the Florida Keys and east 

coast of Florida. From this image sequence, Sargassum reached the northern edge of the LC during May 

24–30, 2018 (Fig. 7c) and was then transported to the Florida Keys in about 5 days (Figs. 7c–7f). After 

about 3 more days, Sargassum reached the east coast of Florida near Miami (Fig. 7h). These results can 

be explained by the mean velocity of the LC/FC system (~1.2–1.6 m/s, Zhang Y. et al., 2022). 

The transport can also be revealed through a lag analysis of time series of Sargassum wet biomass (as 

shown in Fig. 7j). For the period January 2013–February 2022, the two time series of the northwestern 

Caribbean Sea (blue color in Fig. 7j) and around the southeast coast of Florida (red color in Fig. 7j) 

suggest a one-month lag between the two, especially in the summer months of major Sargassum years 

of 2015, 2017, 2018, and 2020. The two exceptional years are 2019 and 2021, when Sargassum was 

transported to south Florida directly from the tropical Atlantic Ocean via the North Equatorial Current 

and the Antilles Current (Drouin et al., 2022), as observed from the SaWS 

(https://optics.marine.usf.edu/projects/saws.html). Another exception occurred in 2014, when 

Sargassum in the GoM appeared to have a local origin (as shown in Fig. 3). In all cases, the Sargassum 

amount in the latter region is not necessarily proportional to that in the former region, clearly indicating 

the complexity of Sargassum transport and growth. Note that the one-month lag described here is 

different from the number of days when the eastward transport of Sargassum was observed during a year 

(third column of Table 1): the former is directly relevant to the behavior and velocity of the Loop 

Current/Florida Current system, while the latter indicates how often such an eastward transport occurs. 

Finally, our findings on the Sargassum transport in the GoM were made possible not only by the 

availability of advanced satellite-based Sargassum products, but also by the full use of ocean surface 

current products derived from multiple altimeters. The method used in this study can be extended to 

https://optics.marine.usf.edu/projects/saws.html
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other relevant topics, such as marine debris and spilled oil transport (e.g., Liu et al., 2011; Kourafalou 

and Androulidakis, 2013; Jolliff et al., 2014; Abascal et al., 2015; Weisberg et al., 2011, 2017). Indeed, 

the transport mechanisms of GoM Sargassum introduced in this study represent the dominant 

mechanisms responsible for the transport of large amounts of Sargassum in the GoM, which were 

derived from the combined maps of Sargassum areal density (0.1° × 0.1°) and altimetry-based surface 

geostrophic currents (0.25° × 0.25°). The transport mechanisms of GoM Sargassum at smaller scale may 

have been overlooked here, and the Sargassum transport mechanisms over the coastal areas (e.g., the 

West Florida Shelf and Louisiana–Texas Shelf) may have not be fully revealed due to the deficiencies 

in current satellite altimetry products. However, these limitations may be overcome with the availability 

of novel surface current products at higher spatial resolution from more advanced satellite altimetry 

missions (e.g., Surface Water and Ocean Topography or SWOT; https://swot.jpl.nasa.gov/). Moreover, 

in addition to surface currents, reliable data on local winds, waves, and tides are also essential in 

interpreting Sargassum beaching in nearshore coastal waters. In such environments, the processes 

elucidating how Sargassum detaches from major surface currents remain unknown and therefore should 

be investigated in future research. 

5. Conclusions 

Based on satellite observations of Sargassum areal density and ocean surface currents, we have shown 

that large amounts of Sargassum in the GoM can either originate from the northwestern GoM or be a 

result of physical transport from the northwestern Caribbean Sea, each having their specific transport 

pathways that influence the spatial distribution patterns of this brown seaweed. The LCS and associated 

eddies were found to play a key role in the Sargassum transport within the GoM. Time series analysis 

also revealed that Sargassum along the southeast coast of Florida may lag Sargassum in the northwestern 

https://swot.jpl.nasa.gov/
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LC 

Caribbean Sea by about one month in most years with major Sargassum blooms, all under the influence 

of the Great Atlantic Sargassum Belt. 

Notations 

FC Florida Current 

GASB Great Atlantic Sargassum Belt 

GoM Gulf of Mexico 

Loop Current 

LCE Loop Current Eddies 

LCS Loop Current System 

MERIS Medium Resolution Imaging Spectrometer 

MODIS Moderate Resolution Imaging Spectroradiometer 

OLCI Ocean and Land Colour Imager 

SaWS Sargassum Watch System 
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University of South Florida. The altimetry data products were obtained from the Copernicus Marine 

Environment Monitoring Service (https://resources.marine.copernicus.eu/products). 
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658 Tables and captions  

Table  1. Durations  (number of  days) of different  transport  pathways  of Sargassum  of Caribbean origin  

in  the  GoM, determined from  “daily”  Sargassum  biomass  density  images  (calculated as  an average  of  

the  past  seven days  with the  current  day included)  between January 2014 and  June  2023. This  analysis  

is focused on years after 2013, before which the  Sargassum  amount in the Caribbean Sea was minimal.  
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       Figure 1. (a) Bathymetry of the Gulf of Mexico and the northwestern Caribbean Sea. The thin gray  

lines  denote  the  200 m  isobath. Important  geographic  features  are  also noted:  Yucatan  Channel,  

Straits  of Florida  (SoF), Florida  Keys, West  Florida  Shelf (WFS), Louisiana–Texas  (LATEX) Shelf,  

Tamaulipas–Veracruz  (TAVE) Shelf, Bay of Campeche, Campeche  Bank, and the  Atlantic  Ocean.  

The  Florida Current (FC) and Gulf Stream (GS) are indicated by thick purple and gray curves with  

arrows, respectively. The  dashed orange  line  with an arrow  on the  Campeche  Bank denotes  the  

ocean currents  driven by northeasterly or easterly  winds  throughout  the  year  (e.g., Zavala-Hidalgo  

et  al., 2014;  Zhang and Hu, 2021). The  yellow, white, and green curves  with arrows  individually  

denote  the  Loop Current  (LC) extension in three  different  stages  (i.e., “port-to-port”, “averagely  
extended”, and “fully extended”), during which it  has  a  northward extension at  ~24, 26, and 28oN, 

respectively (Leben, 2005). After extending northward from  ~24oN  to ~28oN, a  large  anticyclonic  

LC Eddy (LCE, green circle) may form  and detach from  the  extended LC. Before  its  final  separation  

from  the  LC, the  LCE  may re–attach to, and detach from  the  LC several  times  (Leben, 2005;  Schmitz,  

2005). After the  separation  from  the  LC, LCEs  predominantly propagate  westward at  speeds  of ~2– 
5 km/day  (Elliott, 1982;  Hamilton  et  al., 1999).  (b) Distribution of  mean Sargassum  areal  density  

during April–September of 2011–2020, with a  grid size  of 0.5o. Color codes  denote  fractional  cover  

(e.g., 1×10-4  = 0.01%).  Note  that  the  weekly Sargassum  areal  density images  used in this  study have  

a grid size of 0.1o.  
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694 

695 Figure  2.  Schematic  diagrams  showing the  major  transport  pathways  of GoM  Sargassum  of (a) local  

origin and (b) Caribbean origin.  The thin gray lines  in each figure  denote the 200 m isobath. LC and FC  

represent the Loop Current and Florida  Current, respectively. The  dashed blue curves  with  arrows  in  (a)  

indicate  the  eastward transport  pathway of Sargassum  of local  origin, associated with ocean eddies  in  

the  northern GoM  and the  southeastward coastal  currents  on the  West  Florida  Shelf. Sargassum  transport  

pathways  shown in (b)  are  listed as  follows. 1:  northward transport  by the  northward intrusion of the  

Loop Current  extension;  2:  eastward transport  by the  direct  eastward transport  of the  Loop Current;  3:  

westward transport by the wind-driven ocean currents on the Campeche Bank; 4: westward transport by  

the  wind-driven ocean currents  on  the  Campeche  Bank and  eddies;  5:  westward transport  by the  

westward propagation of  eddies  (e.g., Loop Current  Eddies  or LCEs);  6:  westward  transport  by the  

relaying  of eddies  (e.g., LCEs);  7:  westward transport  by the  westward extension of the  Loop Current  

system;  8:  westward transport  by the  westward  currents  (e.g., coastal  currents  on the  Louisiana–Texas  

Shelf)  with/without  eddies in the northern/central  GoM.   
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       Figure  3. Distributions  of MODIS  weekly Sargassum  areal  density in the  GoM  during May and June  

2014, showing the  eastward transport  of Sargassum  from  the  northwestern  GoM  to the  eastern GoM.  

A  value  of 0.02 on the  color bar denotes  0.02%. Gray color indicates  no data, and the  blue  lines  

represent  the  200 m  isobath in each figure. Three  areas  annotated with yellow  boxes  in each figure  

were  chosen for the  time  series  analysis  of Sargassum  biomass  density, and the  corresponding  

results  are  presented in the  inset  figure  of (d).  Note  that  several  consecutive  dates  (i.e., June  27–29 

for box 1 and  June  1–5 for  box 2) had relatively  large  cloud cover, thus  Sargassum  biomass  density  

data  for these  dates  over box 1 or box 2 were  excluded from  the  time  series  analysis. The  yellow  

circle  in each figure  highlights  a  cyclonic  eddy in the  Bay of Campeche. The  black vectors  (with  

scale  overlaid on land in (a)) represent  altimetry-based ocean surface  currents  in each figure, and  

the  white  curves  with arrows  indicate  the  eddies  located in the  western and northern GoM,  

determined from visual inspections.   
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       Figure  4. Distributions  of MODIS  weekly Sargassum  areal  density in the  GoM, showing the  

northward (a–c),  eastward (d–f),  and westward  (g–x) transport  of  Sargassum  of Caribbean  origin.  

A  value  of 0.02 on the  color bar denotes  0.02%. Gray color indicates  no data, and the  blue  lines  

represent  the  200 m  isobath in each figure. The  dashed white  ellipse  in each figure  highlights  the  

Sargassum  patterns under physical  transport. The black vectors in each figure (with scale shown in  

(a) and (m))  represent  altimetry-based ocean surface  currents. Note  that  dates  in (a)–(c)  are  not  

sequential.  
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732 Figure  4. (Continued)  



 
 

 
 

  

       Figure  5. Distributions  of MODIS  weekly Sargassum  areal  density in the  GoM,  showing the  

different  spatial  patterns  of Sargassum  when the  LCS  has  a  northward penetration at  ~28oN  (a–f)  

and ~26oN  (g–l). For the  first  case  (northward penetration at  ~28oN), the  Sargassum  distribution  

maps  are  differentiated into different  years  (a–c) and the  same  year (d–f). For the  other case  

(northward penetration at  ~26oN), (g–i) and (j–l) show  the  spatial  patterns  of Sargassum  in different  

years  and the  same  year,  respectively.  A  value  of  0.02 on the  color bar  denotes  0.02%. Gray color  

indicates  no data, and the  blue  lines  represent  the  200  m  isobath in each figure.  The  black vectors  in  

each figure  (with scale  shown in (a) and (g)) represent  altimetry-based ocean surface  currents. The  

dashed white  circles  and ellipses  in (d)–(f)  highlight  two examples  of westward transport  of  

Sargassum.  The  white  curves  with arrows  in (h) and (i)  indicate  the  direct  transport  of Sargassum  

from the northwestern Caribbean Sea to the Straits of Florida.  
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745 

746 Figure  6. Distributions  of MODIS  sea  surface  temperature  (unit:  °C; left  panel) and Alternate  Floating  

Algae Index (AFAI, no unit;  right panel) in the Straits of Florida on April 29, May 1, and May 3, 2022, 

showing the  eastward transport  of  Sargassum  due  to the  eastward  movement  of a  cyclonic  eddy.  The  

positions  of the cyclonic  eddy and related Sargassum  rafts are indicated  by white arrows. Black  color in  

each image  means  no data. These  images  cover a  region of 21.6oN–26oN  and 84.5oW–79oW, and they  

were obtained from  https://optics.marine.usf.edu/cgi-bin/optics_data?roi=GCOOS&current=1.  
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754 Figure  7. Distributions  of MODIS  weekly Sargassum  areal  density (a–i), showing an example  of  

continuous  transport  of Sargassum  from  the  northwestern Caribbean Sea  to the  Straits  of  Florida.  A  

value  of 0.02 on the  color bar denotes  0.02%. Gray color indicates  no data, and the  blue  lines  represent  

the  200 m  isobath in each figure. The  black vectors  in each figure  (with scale  shown in (a)) represent  

altimetry-based ocean surface currents. (j) shows the time series of wet biomass of Sargassum  from the  

northwestern Caribbean Sea  (blue  color) and southeast  coast  of Florida  (red color) between January 2013 

and February 2022, and the year mark starts from January.  
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